Aircraft Engine Life

The Reasons CamGuard was Created

Edward B. Kollin

Research Director ASL

Background

- Research Director Aircraft Specialties Lubricants

 Manufacturers of "CamGuard"
- Exxon Research and Engineering

 Director of the Engine Research Laboratory

 Advanced Fuels and Lubricants Group

 Initial research on "Elite"
- General Motors Research

Major Obstacles to Making TBO

- *Lack Of Use* Average Use <100 hours/year
 - Time Sitting >8660 hours/year

Blow-by

- Highly reactive & corrosive
- Ring groove & valve guide deposits
 - Sticking parts cause excessive wear & "morning sickness"
- >0.1 gallons of fuel per hour into and through crankcase
- >0.1 gallons of water from combustion /hour through crankcase
 - Combustion makes ≈ 1.2 gallons water per gallon of fuel

• Temperature (power) management

- Rapid temperature changes scuffing cumulative effect
- − Cold temperatures Use multi-weight oils & preheat below 40 ° F

Pitting Corrosion 196 Hours in 4 Years

25 hour oil changes

Camshaft - Pitting Corrosion

200 hours

Spalled Cam and Lifter Failure due to corrosion

400 Hours

What is Blow-by

Intake

Compression

Ignition

Power

Piston Skirt Scuffing Power Mismanagement?

400 Hours

Lubricant Functions

- Lubrication
 - Boundary (metal/metal) Cam/lifters cylinders/rings
 - Hydrodynamic Film (oil wedge) Crankshaft / main bearings,
 rod bearings, cam bosses
- Cooling Heat transfer medium
- Sealing Piston rings & elastomer seals
- Cleaning and suspending Blow-by, lead & other contamination

Aviation Oils vs Automotive Oils

- Major Differences
 - Automotive and Heavy Duty Motor Oils
 - Ash forming metallic detergents
 - ZDDP "Zinc" antiwear
- Aviation Oils Simple formulations

DO NOT USE AUTO OILS IN AIRCRAFT

Aviation Oil Additives Most Current Oil is1980's Technology

- Base stock Mineral, Synthetic or blend
- Dispersant Keep clean by suspending deposit precursors
- Viscosity modifier Changes straight weight to multi-weight
 - Multi-weight vs. straight-weight debate
- Corrosion inhibitors Ferrous & non-ferrous metals
- Antiwear Cam / lifters rings / cylinders valves / guides
- Antioxidant Prevent oxidation leading to deposits
- Antifoam Foam is poor for heat transfer & lubrication

YOU Can Minimize the Problems

Corrosion – PREVENTION is the only option

- Change oil often 25 to 35 hours or quarterly
- DO NOT leave dirty oil sitting in engine 10 Hour oil is **CORROSIVE**
 - Water contaminated with acids, salts, etc.
- Use corrosion inhibiting oils or additives (CamGuard)

NO ADDITIVE CAN CURE EFFECTS OF RUST

Deposits – Lead to Excessive Wear

- Liquid fuel component in blow-by " **IS**" the cause of deposits
 - Lean aggressively on the ground & below 65% power (POH)
 - Multi-probe engine analyzers allow more aggressive leaning
 - LOP ROP debate

What the Oil Sees - 0 to 20 Hours

- Dispersant bonds to leftover "Deposit Precursors"
 - "Keep Clean" by suspension
- Oil/ AO in the ring belt is severely stressed due to small amount circulation & presence of highly reactive blow-by gas
- Oil consumption increases as oil becomes "stickier"
 - Heavy oxidized FUEL components collecting
- IMPORTANT to have ENOUGH oil consumption
 - 1 qt in 4-20 hours
- Lightest components of lube & many aftermarket additives evaporate

What the Oil Sees - 20 to 35 Hours

- Makeup oil 1 to 3 quarts
 - shot of dispersant and A/O
- Deposit precursors from fuel overwhelming dispersant start to form:
 - Lacquer >varnish >hard carbon deposits
 - Sludge combination of lead particles and lacquer can bake into heavy thick carbonaceous deposits

Piston Deposits

Reduce Heat Transfer/Pistons get Hotter

400 Hours

Deposits > > Stuck Rings > > Wear

Stuck Ring

Rusty Ring Sludge

Scuffing

Lead Sludge Buildup - Crankshaft

2000 Hours

Oil 25-35 Hours Recommended Oil Change Interval

- Engine should be warmed up to operating temps by <u>FLYING</u> the Aircraft
 - Cut filter to look for metal, carbon particles & other stuff
- Acids & water in the oil are <u>VERY</u> corrosive
 - Minimal neutralization of acids in ashless oils
 - Cannot be filtered out of oil
- Regular oil analysis Establish a trend for your engine

Engine Break-in

- Cylinder & valve train run-in
- Recommend multi-weight AD oil (manufacture or builder)
- Preheat engine & oil if cold
- Important to use smooth application & reduction of power
- Use high power settings ROP

 Careful to watch for overspeeding & high temperatures
- Use shallow climbs & descents to minimize temperature extremes
- Use power on final **DO NOT** chop and drop

Engine Break-in

- Components run-in
 - Cylinders most important
 - Need high cylinder pressures to push rings out
 - Minimize blow-by
 - Prevent glazing torching of oil film
 - Steel ridges quick break-in / Chrome flat slow break-in
 - Cam & lifters
 - Guides & rocker arm bushings
- Engine break-in quick but first 50 hours are very important to overall engine longevity

New Steel Cylinder Honed Crosshatch Pattern

After Break-in to 100 hours

- Break-in complete
 - Temperatures stabilize Cylinder head & Oil
 - Oil consumption stabilizes

FREQUENCY OF USE IMPACT

- Frequent Use
 - Low wear rates reflected in Oil Analysis
 - Carbon Deposits formed are soft and easily displaced

- Infrequent Use
 - Corrosive environment
 - Real Startup Wear (RUST)
 - Cylinders
 - Rust/Polish pattern
 - Dimensional change
 - Cam lobes & lifters
 - Pitting and spalling
 - Oil analysis erratic values

ENGINE PROBLEMS TYPE SPECIFIC

Continental

- Low compressions
 - Piston ring groove deposits
 - Loss of choke & crosshatching bore polish
 - ring wear / annealing
 - ring reversal step wear
- Exhaust valve guide wear
- Early top

Lycoming

- Cam and lifter corrosion
 - Spalling
- Valve guide deposits"Morning Sickness"
- Exhaust valve guide wear
- Early top

ENGINE 500-1800 HOURS Premature Failure Modes

- Top ring & cylinder wear >> loss of compression >> early top
- Exhaust guide wear affects valve seating >> valve and seat
 overheat >> loss of compression >> early top
- Oil control ring wear >> floating rings with increased oil consumption >> early top

• WHEN TO OVERHAUL

- Low compression Valve leakage or ring wear
- Excessive oil consumption
- Making metal

Conclusions & Recommendations

- Fly Frequently
- Break-in important
- Power / Temperature management
- Frequent oil changes (25-35) hours or quarterly
- Anti-corrosion oils or additives "CamGuard"
- Fly Frequently